Calculation Number

Project Number

Project Title: Calculation of shear lug depth and thickness

Subject/Feature:
- Imperial Units calculation / spreadsheet

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel and concrete properties</td>
<td>Shear lug depth</td>
</tr>
<tr>
<td>Shear force</td>
<td>Shear lug thickness</td>
</tr>
<tr>
<td>Shear lug width</td>
<td></td>
</tr>
</tbody>
</table>

Design shear force:

\[V_{\text{lg}} = 10.00 \text{ kips} \]

Allowable stress of concrete:

\[f'_{\text{c}} = 5.00 \text{ ksi} \]

Required bearing area for the shear lug:

\[A_{\text{lg}} = \frac{V_{\text{lg}}}{(0.35* f'_{\text{c}})} = 5.71 \text{ in}^2 \]

Width of the shear lug:

\[W_{\text{lg}} = 10.00 \text{ in} \]

Necessary shear lug depth below the concrete foundation:

\[H-G = 0.57 \text{ in} \]

Grout thickness:

\[G = 1.00 \text{ in} \]

Required minimum depth of the shear lug:

\[H_{\text{min}} = 1.57 \text{ in} \]

Shear lug depth:

\[H = 2.00 \text{ in} \]

Minimum yield stress of the type of steel being used:

\[F_y = 50.00 \text{ ksi} \]

Cantilever end moment acting on a unit length of the shear lug:

\[M_{\text{lg}} = \left(\frac{V_{\text{lg}}}{W} \right) * \left(\frac{H}{2+G} \right) = 2 \text{ kip-in/in} \]

Resistance factor for flexure:

\[\phi_e = 0.75 \]

Required minimum thickness of the shear lug:

\[t_{\text{lg}} = \left(\frac{6* M_{\text{lg}}}{(0.75* F_y)} \right)^{0.5} = 0.57 \text{ in} \]

References:

- Manual of Steel Construction - American Institute of Steel Construction Inc.,
- Load and resistance factor design (LRFD)