| | Evo Design s.r.l. | | Calculation No. | | | |-------------------|---|----------------------------|-----------------|-------|------| | | | | SAMPLE | | | | CALCULATION SHEET | | Project No. | | | | | | | onlinestructuraldesign.com | SAMPLE | | | | Project Title: | DEMO PROJECT | | Calc. By | Date | Rev. | | | | | MN | today | 0 | | Subject/Feature: | Bolt Preloading Force - Classes 8.8 and 10.9 (Eurocode 3) | | Checked By | Date | | | | | | MN | today | | ## Bolt preloading force - Classes 8.8 and 10.9 (Eurocode 3) per EN 1993-1-8 and EN 1090-2 | Input | Output | | | |---------------------------------|---|--|--| | Bolt type, class and diameter | Bolt design preload (tension in bolt) | | | | Partial factors for steel bolts | Bolt torque reference value for tightening (slip ressistant connection) | | | | | Bolt torque value for tightening (non-slip ressistant connection) | | | **Bolts Type** 20 bolt diameter - d > mm² 245 bolt effective area in threaded region **Bolt class** 10.9 per EN 1993-1-8 Section 3 Table 3.1 Bold yield strength Bolt ultimate tensile strength bolt classes recommended by the Eurocode; N/mm² 1000 N/mm² $f_{yb} =$ 900 $f_{ub} =$ The National Annex may exclude certain bolt classes. Partial factor for steel bolts per EN 1993-1-8 1.25 Section 2 Table 2.1 $\gamma_{M2} =$ 1.1 $\gamma_{M7} =$ partial safety factors recommended by the Eurocode; Numerical values for safety factors may be defined Bolt design strength $f_{yd} = f_y / \gamma_{M2}$ 720.0 N/mm² $f_{vd} =$ Bolt design tension resistance $F_{t,Rd} = f_{yd} * A_s$ $F_{t,Rd} =$ 176.40 kN Bolt design preload per EN 1993-1-8 $F_{p.Cd} =$ $0.7 * f_{ub} * A_s / \gamma_{M7}$ Section 3.6.1 Formula (3.1) for preloaded bolts in accordance with 3.1.2(1) $F_{p.Cd} =$ 155.91 kN (i.e. only bolt assemblies of classes 8.8 and 10.9) Torque reference values for bolt tightening $M_r =$ $k_m * d * F_{p,Cd}$ Section 8.5.2 Paragraph a) - 1) and 2) 0.2 k-class (K1 or K2) and $k_{\rm m}\,value$ declared (normally k=0.2 for typical steel, k=0.2 for zinc-plated, by the fastener manufacturer k=0.18 for lubricated, k=0.16 for cadmium-plated) $M_r =$ 623.6 N*m torque value when the connection is slip ressistant $50 \% * F_{p.Cd} =$ 77.95 kΝ per EN 1993-1-8 Section 3.4.2, Note: in the National Annex per EN 1090-2 If preload is not explicitly used in the design calculations for slip resistances but is required for execution purposes or as a quality measure (e.g. for durability) then the level of preload can be specified in the National Annex. Torque value when there is no slip resistance specified in the design 311.8 N*m $M_{r(non slip)} =$ value for 50 % of the bolt preload capacity References: EN 1090-2:2008 Execution of steel structures and aluminium structures - Part 2: Technical requirements for steel structures EN 1993-1-8:2005 - Eurocode 3: Design of steel structures - Part 1-8: Design of joints